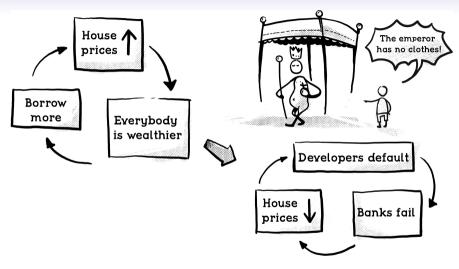

Global Financial Systems Chapter 8 Bank Runs and Deposit Insurance

Jon Danielsson London School of Economics © 2024

To accompany
Global Financial Systems: Stability and Risk
www.globalfinancialsystems.org/
Published by Pearson 2013


Version 11.0, August 2024

Book and slides

 Updated versions of the slides can be downloaded from the book web page www.globalfinancialsystems.org

Analysis

illusionofcontrol.org

Bank Runs and Crises

Analysis

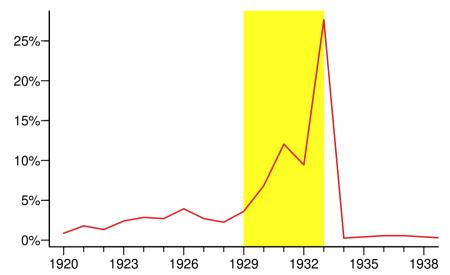
2023

- SVB and CS
- We discuss in Chapter 21 after we had a chance to discuss regulations and bailouts

Bank runs and deposit insurance

- Banks suffer from *maturity mismatches*
- Deposits are short term assets (loans) are long term
- A bank does not have liquid funds to meet all deposits
- If every depositor in a bank wants their money, the bank goes bust
- We saw this with the *Great Depression*
- Bank runs can develop into bank panics
- Two forms of contagion: adverse information and cross-held assets. See next two slides

- The depositors have less information about the quality of bank loans (assets) than the bank
- So long as they trust the bank, there is no problem
- If, however, they lose that trust, they will want their money back
- Which may trigger a bank run
- The trust may not be confined to each bank individually
- Instead, depositors may lose trust in the entire banking system


Cross-held assets

- Banks don't operate in isolation
- They may be exposed to each other or exposed to the same assets
- Therefore, a problem with one bank may cause a problem with all the banks

Runs and crises

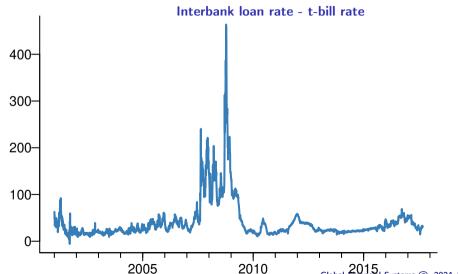
00000 0000000000

Bank failure rate 1920-1939 in the United States

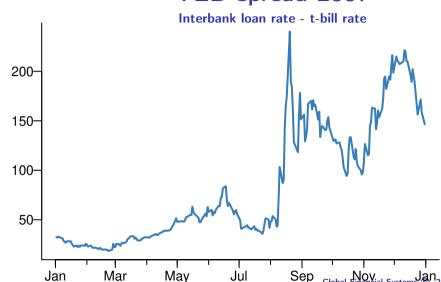
It's a wonderful life (1946)

Analysis

https://www.youtube.com/watch?v=OTJCI1FNBfA

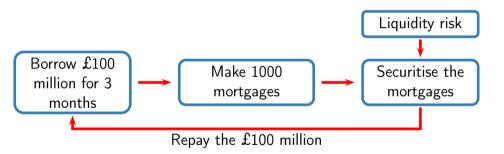

Case — Northern Rock

- The first bank run in the UK since the Overend & Guerney run in 1866 (prevented in 1914 only due to extreme preventative measures)
- The immediate bank run seems to have been triggered by an announcement by the Bank of England that it was providing emergency liquidity support for Northern Rock
- The underlying cause was its funding structure
- The bank run that was shown on TV screens was only the endgame in a bank run that started months earlier in the international asset markets


Business plan

- 1/3 of the UK mortgage market
- Old-school banking, people deposit money in banks that then make mortgages
- Northern Rock got short-term loans, made mortgages, sold them off and repaid the loan
- Simplified example
 - 1. Borrow £100 million for three months from the wholesale markets,
 - 2. Make 1,000 mortgages
 - 3. Structure the mortgages sold on to investors (discuss securitization in a later Chapter)
 - 4. Repay the three-month £100 million loan
- Hidden liquidity risk

TED spread Zoomed on next slide


TED spread 2007

Runs and crises

00000000000000000

Northern Rock

Hidden liquidity risk

- What if it can't sell the mortgages?
- Investors "went on strike" in the summer of 2007
- Bank was walking dead by late summer of 2007
- Wholesale investors knew immediately
- Took some time for the Financial Services Authority to learn
- Tried to resolve the crisis behind the scenes
- BoE announced liquidity support in October 2007
- Run started the following day
- Recall the Reconstruction Finance Corporation

Two waves of bank runs

- Sophisticated wholesale investors in July 2007
- Unsophisticated retail investors in October
- The UK deposit insurance scheme was quite bad, one that was an invitation to a bank run
- The only sensible strategy for depositors was to run the bank.
- With the benefit of hindsight, it is clear that the failure of Northern Rock was inevitable, given time

"To stop the Duke, go for gold"

- Many attempts to get people to cause bank runs for political reasons by withdrawing money from banks
- E.g. some "occupy" groups
- All unsuccessful, except
- 1832
- Parliamentary reform in the UK
- Run on BoE to force Duke Wellington to support reform
- Over £1 million was withdrawn from the Bank

Runs and crises

Deposit Insurance and Diamond-Dybvig

Diamond and Dybvig (1983)

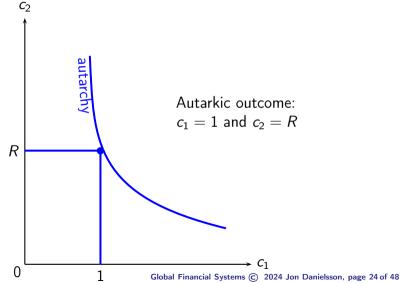
- Banks issuing demand deposits can provide better risk-sharing
- The demand deposit contract will introduce an undesirable equilibrium (a bank run)
- Deposit insurance provided by governments can prevent bank runs
- The bank is assumed to be mutually owned
- Individual uncertainty about the desired time profile of consumption
- Sequential service constraint

Diamond-Dybvig (1983)

- Three periods, t = 0, 1 and 2
- \$1 deposited in t = 0
 - yielding one if withdrawn at t = 1
 - yielding R > 1 if withdrawn at t = 2
- Agents are identical and have a wealth of \$1 in t = 0. There are two types of agents:

```
Early Prefer to consume c_1 in t = 1, getting U(c_1) Late Prefer to consume c_2 in t = 2, getting U(c_2)
```

- Agent does not know if she is early or late at t=0, but learns it at t=1
- Fraction λ are early, and 1λ late


Autarky No trade

- Suppose there are no means to shift consumption, i.e. autarchy
- And since the agent does not know if she is late or early
- At t = 0 her expected utility is

$$\mathsf{E}(U) = \lambda U(c_1) + (1 - \lambda)U(c_2)$$

= $\lambda U(1) + (1 - \lambda)U(R)$

• The late agent will have a higher eventual utility than the early agent

Utility under autarchy

Optimal social insurance

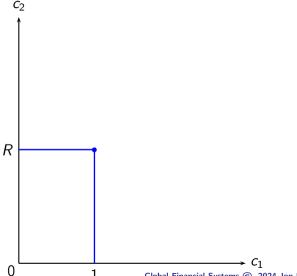
- Suppose there are two agents. One is late, the other is early, with $\lambda=0.5$. Is there a way for the agents to insure against the unlucky outcome of being an 'early' agent?
- At t = 0 they make the following agreement:
 - At t=1 the late agent will pay the early agent some amount π
 - The early will have consumption $\tilde{c}_1 = 1 + \pi$ and the late $\tilde{c}_2 = R(1 \pi)$
- If π is chosen correctly, it will increase expected utility

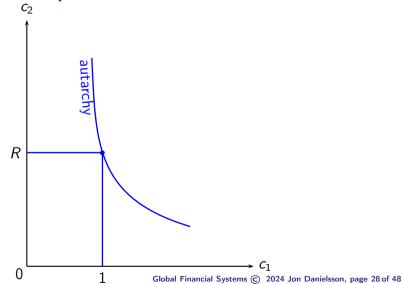
Solving

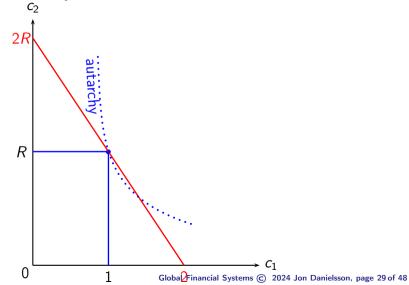
We are maximizing for both agents, so the intertemporal budget constraint is

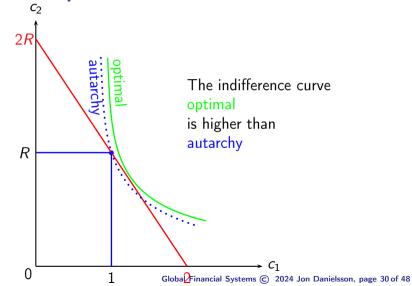
$$\tilde{c}_2 = R(2 - \tilde{c}_1)$$

so the problem is


$$egin{aligned} \max_{ ilde{c}_1} \mathsf{E}(U) = & U(ilde{c}_1) + U(ilde{c}_2) \ = & U(ilde{c}_1) + U(R(2- ilde{c}_1)) \end{aligned}$$


Differentiating w.r.t. \tilde{c}_1 gives the standard result


$$\frac{U'(\tilde{c}_1)}{U'(\tilde{c}_2)} = R$$


i.e., the marginal rate of substitution equals the marginal rate of transformation

$$c_2^* \geq c_1^* \iff R \geq 1$$

A bank

- Suppose there is a large number of agents
- Diamond–Dybvig show that the same the solution is obtained if a financial institution (a bank) creates a bank account that pays the optimal amounts $1+\pi$ in t=1 and $R(1-\pi)$ in t=2
- This shows the role of *financial intermediation* in increasing welfare

What about bank runs?

Fractional reserve banking

- Fractional reserve: collect the endowments of consumers and invest a fraction of them in the long-term investments
- Will the bank be able to fulfil the contractual obligation?
- ullet R < 1, late investors will always withdraw early
- $R \ge 1$, two equilibria good and bad
- (see two slides down)

Cash

- Suppose there are N depositors
- The amount the bank has on hand at t = 1 is \$N
- But the total value of deposits is $N(1 + \pi)$
- So the bank does not have enough cash to pay off all depositors at t=1

Bank run

- The *first* person to demand the money at t=1 will get the full amount $1+\pi$
- Up to the fraction $1/(1+\pi)$
- That *last* $\pi/(1+\pi)$ get *nothing*
- Hence, agents want to be the first and run the bank

No run
$$E(U) = \lambda U(\tilde{c}_1) + (1 - \lambda)U(\tilde{c}_2)$$

Run
$$\mathsf{E}(U) = \frac{U(\tilde{c}_1)}{1+\pi} < \lambda U(\tilde{c}_1) + (1-\lambda)U(\tilde{c}_2)$$

Deposit insurance

- Government makes the agents that were *first in the queue* and get $1+\pi$ pay a tax of π
- Which is enough to pay the unlucky ones late to the queue
- That is, the government guarantees that every agent can get \$1 at t=1
- So agents always know they get their initial deposit back regardless of whether there is a run or not
- So long as the probability of a run is not 100% *late* agents are better off not running since they have a chance of getting $\tilde{c}_2 > 1$
- This, in turn, makes the good equilibria unique, so there will be no run

Deposit insurance

- Who should carry out the deposit insurance scheme, government or a insurance company?
- Power of taxation
- Deposit insurance law

Runs and crises

Analysis
•00000000

Moral hazard

Analysis

- Deposit insurance can perform a variety of roles, most importantly, preventing bank runs
- It has been criticized for generating moral hazard and incentives for excessive risk-taking by banks
- Both bank depositors and bank managers may contribute to moral hazard

Pros of deposit insurance

- Protects unsophisticated depositors in the event of closure
- Levels the playing field for large financial institutions of systemic relevance and small ones
- Acts as a speedy source of funds for the resolution of institutions
- Prevents bank runs

Cons of deposit insurance

- Generats moral hazard
- Creates incentives for excessive risk-taking by banks
- By guaranteeing deposits, market incentives to monitor banks and to demand an interest payment commensurate with the risk of the bank are diminished
- Insurance premium charged cannot always fully internalize the cost of risk, which creates an incentive for banks to take on more risk
- Who should pay for it? The government? Other banks? Insurance premiums?
- Raises difficult questions in Europe

Misguided views on deposit insurance

- Before the crisis, there was the view that because deposit insurance was not used, it was not needed
- This is wrong
- The central conclusion from the DD model is that a deposit insurance scheme that works will never be needed
- The absence of runs does not mean deposit insurance is useless or worse

Wholesale markets

- Banks increasingly rely on the wholesale market
- Northern Rock's experience indicates that bank runs can come in two waves
 - first sophisticated institutional investors
 - then by unsophisticated retail depositors

Argentina

- Before 1991, deposit insurance
- In 1991 and 1992, Argentina reversed this policy intending to convince financial markets that it would not under any circumstances rescue a failing bank
- In 1995, in the face of a forthcoming election and a severe economic crisis sparked by the Mexican peso devaluation of December 1994, the Argentine government reinstituted a form of deposit insurance in an effort to stave off an all-out bank panic
- Suggests it is not credible to forswear deposit insurance

2007

- Triggered a reconsideration of the effectiveness of insurance arrangements in the UK
- After the first £2,000, legislation only protected 90% savings of up to £33,000 guaranteeing a maximum payout of £31,700
- The time it could take for depositors to get their money-back was far too long
- On 1 October 2007, Chancellor Alistair Darling announced that the scheme to protect savers with money deposited in UK banks was expanded to guarantee 100% of savings

Cyprus and deposit insurance

- Slow run on Cypriot banks from second part to lesson 2012
- Crisis in March 2012
- Government insists on hitting depositors with insured deposits (below €100,000)
- Undermines the entire deposit insurance scheme in Europe
- Quick backtracking

Runs and crises

Bibliography I

Diamond, D.W., and P. Dybvig. 1983. "Bank Runs, Deposit Insurance, and Liquidity." Journal of Political Economy 91:401-419.